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Abstract 

We study the mechanical response under large elastic strains of pentamode layers confined between 
stiffening plates, and the potential use of such systems as novel seismic isolation and impact 
protection devices. We analyze pentamode materials that exhibit three soft deformation modes in the 
infinitesimal stretching regime that follow by the presence of perfectly hinged connections between 
the rods. The response of these metamaterials under large elastic strains is characterized by an 
elastic-stiffening effect in terms of the lateral force-displacement response, which increases in the 
presence of rigid connections and hard-device loading conditions, and decreases by increasing the 
number of layers. Our results lead us to conclude that the analyzed pentamode metamaterials can be 
effectively employed as novel, performance-based impact protection gear and seismic isolation 
devices by designing the lattice geometry, the stiffness properties of the joints, and the lamination 
scheme in a suitable manner and as a function of the operating conditions. 

1. Introduction 
In the last few years, mechanical and acoustic metamaterials have attracted the attention from 
different areas of research because of their unique behavior. Such smart materials are artificial 
structured lattices whose mechanical properties are mainly derived by their geometrical structure 
rather than their chemical composition (refer, e.g., to papers [1][2]). The class of “extremal materials” 
has been introduced in [3] to define materials that behave as extremely stiff in some mode of 
deformation and extremely soft in other modes. These are called uni-mode, bi-mode, tri-mode, 
quadra-mode and penta-mode materials, deriving from the number of the small mode of deformation 
they can achieve. This definition applies to a special class of mechanical metamaterials – composite 
materials, structural foams, cellular materials, etc. – which feature special mechanical properties. A 
specific category of extremal materials, called penta-mode meta-materials, have received particular 
attention in the literature. In particular, 3D printing techniques have been employed to manufacture 
such materials both at the macroscale [4][5] and microscale [6].  

Pentamode metamaterials have five very small eigenvalues, meaning that they are very soft in five 
out of six principal directions of the elasticity tensor. This means that they show a very large bulk 
modulus (B), as compared to their shear modulus (G). The properties peculiar to pentamode 
metamaterials lead them to be suitable for many applications, such as transformation acoustics and 
elasto-mechanical cloak (refer, e.g., to [7]-[10] and the references therein). Their potential in different 
engineering fields is still only partially explored. 

Whilst there are well-established measures to prevent the collapse of structures during seismic events 
such as earthquakes, these will not prevent a significant amount of damage being sustained in a 
seismic disturbance. Thus, there is now an impetus in the structural engineering field to further 
investigate methods that can reduce or even eliminate the damage that is typically sustained during 
these events (refer, e.g., to [11][12] and the references therein). One such method is seismic isolation, 
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which is receiving increased attention due to its effectiveness and ease of implementation on both 
existing and new structures. Seismic isolation has two fundamental concepts: to change the natural 
frequencies of the structure so they do not coincide with those frequencies of the seismic event, and 
the ability to dissipate a large amount of energy. The most popular seismic isolators in current use are 
elastomeric bearings, sliding bearings, and a combination of bearings with additional devices (e.g., 
with dissipative purposes) [11]-[16]. 
The ability of pentamode lattices to have both very soft and very stiff deformation modes suggests 
they are potentially suitable for use as seismic isolators [5], [17]-[19]. Unlike most other seismic 
isolators, where the response depends entirely on the properties of the materials used, the response of 
pentamode lattices depends mostly on their geometry. This is advantageous, as their response can be 
easily tuned by altering the geometry to control the vertical and horizontal stiffness for each 
application [5]. Previous studies have investigated the bending-dominated response of confined 
pentamode structures formed by alternating lattices with a face-centered-cubic (fcc) unit cell and 
stiffening plates (fcc systems) [5], [17]-[19]. Here we study a different kind of metamaterials, which 
use pentamode lattices whose unit cell consists of one half of the fcc cell (sfcc systems, cf. Sect. 2). 
By simulating the mechanical response of physical models of sfcc systems in the large elastic strain 
regime, we observe a stiffening effect in terms of the lateral force vs. lateral displacement response 
with increasing amplitude of lateral displacements, which becomes particularly relevant in the 
presence of rigid (moment-resisting) connections, and hard-device loading (Sect. 3). Such a 
geometrically nonlinear effect is accompanied by a softening response of vertical displacements 
under mixed-device loading, and becomes less effective by layering multiple sfcc layers, one over 
the other (cf. Sect. 3.2). It is worth noting that a similar hardening response is desired in triple friction 
pendulum bearings, with the aim of significantly increasing the stiffening of the device when the 
bearing reaches its ultimate displacement capacity [20][21]. Using a multi-layer design strategy, we 
are able to design laminated sfcc systems made of steel, which exhibit effective lateral stiffness 
approximatively equal to that of a commercial seismic isolator made of soft rubber-pads and thin steel 
shims. The analyzed sfcc pentamode bearings are tension-capable, i.e., can bear both compression 
and tension vertical loads during seismic excitations, due to the nonzero tensile strength of the rods 
forming the pentamode lattices (refer, e.g., to the recent paper [22], and references therein, for the 
technical relevance of tension-capable bearings). Sect. 4 summarizes the main results of the present 
study and suggests future research lines aimed at exploring the engineering potential of the pentamode 
metamaterials. 

2. Physical models of sfcc pentamode metamaterials 
The present section numerically investigates  the elastic response of physical models of laminated 
pentamode metamaterials that show elementary modules of four rods meeting at a point confined 
between stiffening plates (sfcc systems, see Figure 1a).  We employ steel bars grade S335JH, with 
Young modulus 𝑬𝑬𝒐𝒐 = 𝟐𝟐𝟐𝟐𝟐𝟐 GPa and yield strength 𝒇𝒇𝒚𝒚 = 𝟑𝟑𝟑𝟑𝟑𝟑 MPa [23][24], which can be connected 
to each other through the ball joint systems typically used in space grids [25]. We analyze lattices 
with  𝟐𝟐 × 𝟐𝟐  sfcc unit cells on the horizontal plane, each of which is composed of two elementary 
modules. The lattice constant 𝒂𝒂 is set equal to 1200  mm, and the layer height is set equal to 𝟔𝟔𝟔𝟔𝟔𝟔 mm. 
The stiffening plate edge length is equal to 2400 mm, and the rods are hollow circular tubes with 
length  𝓵𝓵 = 519.6 mm.  
We consider systems endowed with hinged, rigid or semi-rigid connections, in order to account for 
technical difficulties related to the manufacturing of perfectly hinged space grids; these problems are 
mainly due to the finite size of the bolts connecting the rods to the ball joints, and to friction effects 
at the nodes [25]. As we shall see, the analyzed systems may exhibit a marked stiffening response in 
the large elastic deformation regime (slope of the load-displacement curves markedly increasing with 
the lateral displacements). For that reason, and with the aim of preventing buckling and yielding 
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effects during the service behavior, our first results refer to lattices equipped with thick rods that 
feature 76.1 mm diameter and 5 mm wall thickness (𝑠𝑠 = 1,116.84 mm2) [23],  which  results in: 𝑃𝑃𝑦𝑦 =
𝑓𝑓𝑦𝑦  𝑠𝑠 = 396.48 kN. On assuming perfectly hinged connections, the Eulerian critical load of the generic 
rods is: 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝑜𝑜𝐼𝐼/ ℓ2=5,444.23 kN; 𝐼𝐼 = 709,220.30 mm4 denoting the moment of inertia of the 
cross-section. We will refer to such systems with the label 76SFCC. In Sect. 3.2, we will also examine 
lattices featuring relatively more slender rods, which have a 48.3 mm diameter and 5 mm wall 
thickness [23]; 𝑠𝑠 = 680.15 mm2; 𝐼𝐼 = 161,527.42 mm4; 𝑃𝑃𝑦𝑦 = 241.46 kN; 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝑜𝑜𝐼𝐼/
 ℓ2=1,239.94 kN. We will refer to systems equipped with such rods as 48SFCC systems hereafter. 

3. Large elastic deformations 
We study the response of the models illustrated in the previous section under large elastic strains. We 
examine a displacement (or hard-device) loading condition, and a mixed-device, vertical force – 
lateral displacement loading condition on the top plate of the analyzed systems, always keeping the 
bottom plate at rest. The hard-device loading condition is applied to a monolayer system, while the 
mixed-device loading condition is applied both to a monolayer and multilayer system. 

In the remainder, let 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑧𝑧 respectively denote the total forces acting on the top plate of the current 
system in the 𝑥𝑥- and 𝑧𝑧- directions. We use solid lines to indicate branches of the force-displacement 
curves such that all the members’ cross sections are verified elastically under the action of the 
competent axial force (pre-axial-yielding branches: PAYB); and dashed lines to indicate branches in 
which such an axial yield check (AYC) is violated in one or more rods. We omit the change in the 
rods’ cross-sectional properties, due to transverse deformation effects, when performing the above 
AYC. The study of the post-elastic behavior of the structures under examination is beyond the scope 
of the present work. 

3.1 Hard-device loading  
We apply a two-step displacement loading history on the top plate of a monolayer 76SFCC system, 
on assuming quasi-static loading conditions. First, we apply a downward uniform vertical 
displacement 𝑑𝑑𝑧𝑧 = 𝑑𝑑𝑧𝑧0 = −1.478 mm to the top plate. Next, we apply a uniform 𝑑𝑑𝑥𝑥 − displacement 
ramp history to the top plate (in the positive 𝑥𝑥– direction), by keeping the above 𝑑𝑑𝑧𝑧  displacement 
fixed. The elastic response of the system under consideration is analyzed in the large displacement 
regime, through the commercial finite element software Sap2000® version 18 [26][27] (Figure 1), 
and an in-house discrete element code . We employ two different finite element models: one featuring 
semi-rigid connections between the beam elements that describe the rods (SRC-FEM); and the other 
exhibiting rigid connections between such elements (RC-FEM). The SRC-FEM is obtained by 
introducing partial fixity rotational springs at the ends of each rod, and prescribing the following 
stiffness coefficients (both in torsion and bending) to each 

𝐾𝐾𝜗𝜗 = 𝛼𝛼 𝐸𝐸0  𝑠𝑠 ℓ (1) 

𝛼𝛼 denoting a dimensionless parameter, and 𝜗𝜗 denoting the generic rotational degree of freedom (dof) 
at the end of the element [26]. Our simulation results assume 𝛼𝛼 = 10−3, in order to allow the SRC-
FEM to approximate a frame model with hinged/pinned connections. The RC-FEM instead assumes 
no releases of rotational dof at the extremities of each rod, and corresponds to prescribing 𝛼𝛼 → ∞ in 
Eqn. (1). Finally, we employ a discrete element model (DEM) [28]-[29] that describes the junctions 
between the rods as point masses and the rods as linear springs, which implies a total release of the 
rotational dofs at the ends of each rod (perfectly hinged connections: 𝛼𝛼 → 0) . In each of the above 
models, we model the stiffening plates as rigid elements, both in-plane and out-of-plane (combined 
diaphragm and plates constraints [26]). The employed FEMs make use of the Nonlinear Static 
Analysis available in Sap2000®, taking into account both P-delta and large-displacement effects [26]. 
It is worth remarking that sfcc systems equipped with pin joints are unstable under incremental lateral 



4 
 

displacements from the reference configuration [30]. For this reason, the response of the DEM 
equipped with hinged connections (HC-DEM) has been studied via the dynamic relaxation procedure 
presented in Ref. [31]. 

Table 1 shows the vertical stiffness coefficients 𝐾𝐾𝑣𝑣,0 recorded for the models under consideration in 
correspondence with the vertical preload phase (slope at the origin of the vertical force vs. vertical 
displacement curve). Such coefficients are similar to that of the HC-DE, which shows the stretching-
dominated character of the response of the current models. For all the such models, we estimate a 
vertical preload 𝐹𝐹𝑧𝑧0 ≈ −1.8 MN under the prescribed value of 𝑑𝑑𝑧𝑧0,  which corresponds to the vertical 
preload analyzed in the experimental tests on a commercial rubber bearing presented in Refs. [18]-
[19] (the rubber bearing featured the following properties: diameter 0.85 m, height 0.35 m, 29 rubber 
layers of 7 mm each, 28 steel shims of 3.04 mm each, two terminal rubber layers of 31.8 mm each 
and covers, without lead plug data  provided by Caltrans Testing Facility, University of California, 
San Diego). 

  
(a) (b) 

Figure 1. Finite element model of a monolayer 76SFCC system under hard-device loading: (a) 
reference configuration; (b) deformed shape under 𝒅𝒅𝒙𝒙 = 𝟐𝟐𝟐𝟐𝟐𝟐 mm (SRC-FEM). 

Table 1. Vertical stiffness 𝑲𝑲𝒗𝒗,𝟎𝟎 [kN/mm] of the analyzed monolayer 76SFCC systems. 

HC-FEM SRC-FEM RC-FEM 
1.204E+03 1.207E+03 1.208E+03 

 

Figure 2 shows the force-displacement curves obtained for the HC-DEM, SRC-FEM and RC-FEM 
(see the inserts in Figure 2 for the behavior near the origin of such models). The deformed shape of 
the SRC-FEM under 𝑑𝑑𝑥𝑥 = 250 mm is graphically illustrated in Figure 1b. 

  
(a) (b) 

Figure 2. Force vs. displacement curves of monolayer 76SFCC systems under hard-device 
loading: (a) lateral force vs. lateral displacement; (b) vertical force vs. lateral displacement. 
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The results in Figure 2 highlight a marked stiffening (or hardening) character of the 𝐹𝐹𝑥𝑥 − 𝑑𝑑𝑥𝑥 and 𝐹𝐹𝑧𝑧 −
𝑑𝑑𝑥𝑥 curves exhibited by the analyzed models, for large or moderately large values of 𝑑𝑑𝑥𝑥. In the small 
displacement regime, we instead note that the 𝐹𝐹𝑥𝑥 − 𝑑𝑑𝑥𝑥 curve of the HC-DEM features zero slope at 
the origin, which highlights that such a structure exhibits infinitesimal shear-type mechanisms from 
the reference configuration (cf. the insert in Figure 2a). The 𝐹𝐹𝑥𝑥 − 𝑑𝑑𝑥𝑥 curve of the SRC-FEM instead 
shows a small positive slope at the origin. Finally, the 𝐹𝐹𝑥𝑥 − 𝑑𝑑𝑥𝑥 curve of the RC-FEM features a 
markedly positive slope for 𝑑𝑑𝑥𝑥 = 0. All the 𝐹𝐹𝑧𝑧 − 𝑑𝑑𝑥𝑥 curves of the examined models start with  𝐹𝐹𝑧𝑧 ≈
−1.8 MN at 𝑑𝑑𝑥𝑥 = 0, as a consequence of the vertical preload (see the insert in Figure 2b). It is 
interesting to observe that the 𝐹𝐹𝑧𝑧  force rapidly assumes positive values (tensile forces on the top plate), 
as the lateral displacement 𝑑𝑑𝑥𝑥 grows, in the current loading conditions (𝑑𝑑𝑧𝑧 = 𝑑𝑑𝑧𝑧0 = const, while 𝑑𝑑𝑥𝑥 
grows). Of note here is that the analyzed systems are tension-capable [22], due to the nonzero tensile 
strength of the rods forming the pentamode lattices. The AYCs are violated already for 𝑑𝑑𝑥𝑥 ≥ 10 mm 
in the RC-FEM, as a consequence of the marked stiffening character of the force-displacement curve 
of such a system. The force-displacement curves of the SRC-FEM and HC-DEM are rather close 
together (stretching-dominated response), and the PAYBs of such curves extend up to 𝑑𝑑𝑥𝑥 ≈ 50 mm 
(Figure 2). It is worth observing that, while the 𝐹𝐹𝑥𝑥 − 𝑑𝑑𝑥𝑥 curve of the RC-FEM is markedly stiffer than 
those of SRC-FEM and HC-DEM, the 𝐹𝐹𝑧𝑧 − 𝑑𝑑𝑥𝑥 curves of the SRC-FEM and HC-DEM have slightly 
greater slope than the 𝐹𝐹𝑧𝑧 − 𝑑𝑑𝑥𝑥 curve of the RC-FEM, (cf. Figure 2a and Figure 2b). 

3.2 Mixed-device loading  

Let us now study the response of a 76SFCC monolayer system under a fixed vertical load 𝐹𝐹𝑧𝑧, with 
increasing lateral displacements 𝑑𝑑𝑥𝑥 of the top plate (mixed-device loading). We conduct such a study 
by focusing our attention on the SRC- and RC-FEMs described in the previous section, based on the 
consideration that perfectly hinged systems are not easily implemented in practice, especially when 
dealing with large displacements (due to unavoidable friction effects at the nodes). Figure 3 shows 
the lateral force vs. lateral displacement curves obtained for the SRC-FEM and the RC-FEM in 
correspondence with several values of the vertical load 𝐹𝐹𝑧𝑧. The results in Figure 3 highlight that the 
RC-FEM carries  large horizontal forces and features a marked stiffening response under increasing 
lateral displacements, for any of the examined vertical loads, as we already observed in hard-device 
conditions. The PAYB of such a system extends up to 𝑑𝑑𝑥𝑥 ≈ 50 mm under zero vertical load, and 
𝑑𝑑𝑥𝑥 ≈ 35 mm under 𝐹𝐹𝑧𝑧 = −1.8 MN. The  𝐹𝐹𝑥𝑥 − 𝑑𝑑𝑥𝑥 curves of the SRC-FEM instead feature a low-
stiffness branch up 𝑑𝑑𝑥𝑥 ≈ 400 mm, which is followed by a markedly stiff branch (𝑑𝑑𝑥𝑥 > 400 mm). 
The PAYB of the SRC-FEM goes up to 𝑑𝑑𝑥𝑥 ≈ 280 mm under zero vertical load, and 𝑑𝑑𝑥𝑥 ≈ 330 mm 
under 𝐹𝐹𝑧𝑧 = −1.8 MN. 
The multi-layer 76SFCC and 48SFCC systems were examined, under the same mixed-device loading 
condition as above,  assuming 𝐹𝐹𝑧𝑧 = −1.0 MN as vertical preload (Figure 4). Table 2 shows the 
vertical stiffness coefficients 𝐾𝐾𝑣𝑣,0  obtained for the SRC-and RC-FEMs of such systems, which we 
will often denote by the short-hand notations SRC-76/48SFCC and RC-76/48SFCC, respectively. 
The 𝐾𝐾𝑣𝑣,0  coefficients of the models equipped with 𝑛𝑛𝑧𝑧 layers are approximatively equal to 1/𝑛𝑛𝑧𝑧 of 
those competing to the corresponding monolayer systems.   

The  𝐹𝐹𝑥𝑥 − 𝑑𝑑𝑥𝑥 curves of 76SFCC systems equipped with different numbers of layers are shown in 
Figure 5. In the two- and three-layer systems equipped with semi-rigid connections, we observe a 
significant reduction of the hardening effect found in the monolayer case. The PAYB of the RC-
76SFCC systems switches from 𝑑𝑑𝑥𝑥 < 39 mm in the monolayer case to 𝑑𝑑𝑥𝑥 < 68 mm and 𝑑𝑑𝑥𝑥 < 91 
mm in two- and three-layer systems, respectively. Concerning the SRC-76SFCC systems, we  observe 
that the PAYB of the monolayer case goes up to 𝑑𝑑𝑥𝑥 < 343 mm, and that yielding does not occur at 
all in the two- and three-layer systems, up to 𝑑𝑑𝑥𝑥 = 500 mm. 
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Figure 3. Lateral force vs. lateral displacement curves of RC- and SRC-FEMs of monolayer 

76SFCC systems under mixed-device loading. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Illustrations of multilayer SRC-76SFCC finite element models. (a-b): Reference 
configuration (a) and deformed shape under 𝒅𝒅𝒙𝒙 = 𝟓𝟓𝟓𝟓𝟓𝟓 mm (b) of a two-layer system. (c-d): 

Reference configuration (c) and deformed shape under 𝒅𝒅𝒙𝒙 = 𝟓𝟓𝟓𝟓𝟓𝟓 mm (d) of a three-layer system. 

Table 3 compares the effective (secant) stiffness 𝐾𝐾ℎ,eff of mono- and multi-layer systems at the end-
points of the displacement ranges 𝑑𝑑𝑥𝑥 ∈ [0-250] mm and 𝑑𝑑𝑥𝑥 ∈ [0-500] mm. There is a marked abatement 
of 𝐾𝐾ℎ,eff when passing from mono- to multi-layer systems. With reference to the loading interval 𝑑𝑑𝑥𝑥 ∈ 
[0-500] mm and the SRC-76SFCC models, we observe that the 𝐾𝐾ℎ,eff of the systems with 𝑛𝑛𝑧𝑧 = 2 and 
𝑛𝑛𝑧𝑧 = 3 are ~1/74 and ~1/133 of that exhibited by the monolayer system, respectively. In the same 
loading interval of the SRC-48SFCC models, the 𝐾𝐾ℎ,eff of the systems with 𝑛𝑛𝑧𝑧 = 2 and 𝑛𝑛𝑧𝑧 = 3 are 
instead respectively ~1/68 and ~1/81 of the 𝐾𝐾ℎ,eff  corresponding to the case  with 𝑛𝑛𝑧𝑧 = 1. It is worth 
noting that such reductions are much larger than the analogous reductions of 𝐾𝐾𝑣𝑣,0 when passing from 
mono- to multi-layer systems (cf. Table 3 and Table 2). 
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 We also observe that the 𝐾𝐾ℎ,eff exhibited at 𝑑𝑑𝑥𝑥 =500 mm by the SRC models are of the same order 
of magnitude of the 𝐾𝐾ℎ,eff recorded for a commercial rubber bearing in Refs. [18]-[19] (𝐾𝐾ℎ,eff~ 1.5-
2.0 kN/mm; 𝐾𝐾𝑣𝑣,eff~ 700 kN/mm).  

Table 2. Vertical stiffness 𝑲𝑲𝒗𝒗,𝟎𝟎  [kN/mm] of the analyzed systems under mixed-device loading, 
for varying numbers of layers 𝒏𝒏𝒛𝒛. 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑧𝑧 SRC-FEM RC-FEM 
76SFCC 1 1207.01 1208.04 
76SFCC 2 610.70 621.10 
76SFCC 3 417.52 420.50 
48SFCC 1 736.55 747.60 
48SFCC 2 368.14 373.66 
48SFCC 3 245.27 248.95 

 

 

 
Figure 5. Lateral force vs. lateral displacement curves of 76SFCC systems for varying numbers of 

layers 𝒏𝒏𝒛𝒛, under mixed-device loading. 

Table 3. Effective horizontal stiffness 𝐾𝐾ℎ,eff of the analyzed multilayer systems. 

 

 

 

 

 

 

 

  RC - FEM SRC - FEM 

  𝐾𝐾ℎ,eff [kN/mm] 𝐾𝐾ℎ,eff [kN/mm] 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑧𝑧  [0-250] mm   [0-500] mm   [0-250] mm  [0-500] mm  
76SFCC 1 115.97 337.15 8.49 257.24 
76SFCC 2 47.20 57.83 2.88 3.74 
76SFCC 3 30.72 33.78 1.85 2.07 
48SFCC 1 26.81 182.65 5.21 167.95 
48SFCC 2 10.35 13.74 1.76 2.47 
48SFCC 3 6.77 7.62 1.86 2.07 
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Figure 6 (a) compares the lateral force vs. lateral displacement curves of SRC-76SFCC and SRC-
48SFCC systems, and demonstrates that the PAYB of the monolayer 76SFCC system (𝑑𝑑𝑥𝑥 < 343 
mm) is slightly wider than that of the monolayer 48SFCC system (𝑑𝑑𝑥𝑥 < 302 mm). The 𝐹𝐹𝑥𝑥 vs. 𝑑𝑑𝑥𝑥 
curves of the 76SFCC systems are stiffer than those of the 48SFCC systems, in the cases with 𝑛𝑛𝑧𝑧 = 1 
and 𝑛𝑛𝑧𝑧 = 2. In the three-layer case, 76SFCC and 48SFCC systems instead feature a similar 𝐹𝐹𝑥𝑥 vs. 𝑑𝑑𝑥𝑥 
response, as confirmed by the results given in Figure 6 (a) and Table 3. Figure 6 (b) shows the vertical 
displacement vs. lateral displacement curves of the SRC-76SFCC systems with different numbers of 
layers (displacements of the top-most layer). Snapshots of the deformed configurations of single- and 
two-layer systems are provided in Figure 7, in correspondence with selected values of the top-plate 
displacement 𝑑𝑑𝑥𝑥. The vertical displacements of the monolayer system are markedly larger than those 
exhibited by multilayer systems. The extremely large vertical displacements of the system with 𝑛𝑛𝑧𝑧 =
1 would nearly reduce to zero the system height (𝑑𝑑𝑧𝑧 = 525 mm at 𝑑𝑑𝑥𝑥 = 500 mm, cf. panel (i) of 
Figure 7). It is worth noting, however, that the dashed branch of the 𝑑𝑑𝑧𝑧 vs. 𝑑𝑑𝑥𝑥 curve for 𝑛𝑛𝑧𝑧 = 1 is just 
theoretical, since the monolayer 76SFCC system would actually experience plastic deformations for 
𝑑𝑑𝑥𝑥 > 343 mm, instead of a purely elastic response (post-buckling branch). As we already observed, 
the maximum vertical displacement markedly reduces in magnitude by increasing the number of 
layers. The system with 𝑛𝑛𝑧𝑧 = 2 indeed exhibits 𝑑𝑑𝑧𝑧 = 239 mm for 𝑑𝑑𝑥𝑥 = 500 mm, while the system 
with 𝑛𝑛𝑧𝑧 = 3 exhibits 𝑑𝑑𝑧𝑧 = 153 mm, always at 𝑑𝑑𝑥𝑥 = 500 mm. 

  
(a) (b) 

Figure 6. (a) Lateral force vs. lateral displacement curves of SRC-76SFCC and SRC-48SFCC 
systems with different numbers of layers. (b) Vertical displacement vs. lateral displacement 

curves of 76SFCC systems showing different numbers of layers. 
 
We end by commenting on the distributions of the forces carried by the systems illustrated in Figure 
7. Our results indicate that the rods of both single- and two-layer systems carry almost uniform 
distributions of compressive axial forces in correspondence with the vertical preload phase (cf. panels 
(a)-(b) of Figure 7). The compressive forces carried by the rods inclined towards the direction of the 
applied lateral displacement (i.e., towards the positive 𝑥𝑥-axis) progressively turn into tensile forces, 
for increasing values of 𝑑𝑑𝑥𝑥 (see panels (c)-(j) of Figure 7 for the deformed shapes corresponding to 
𝑑𝑑𝑥𝑥 > 0). 
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 𝑛𝑛𝑧𝑧 = 1 𝑛𝑛𝑧𝑧 = 2 

𝑑𝑑 𝑥𝑥
 =

 0
 m

m
 

  
(a) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡= -0.8 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚 =  -0.41 mm (b) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡= -1.7 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚 = -0.83 mm 

𝑑𝑑 𝑥𝑥
 =

 5
0 

m
m

 

  
(c) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡= -5.0 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚=  -2.5 mm (d) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡= -2.2 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚 =  -1.0 mm 

𝑑𝑑 𝑥𝑥
 =

 2
00

 m
m

 

  
(e) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡= -71 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚=  -35 mm (f) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡= -33 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚 =  -9 mm 

𝑑𝑑 𝑥𝑥
 =

 3
50

 m
m

 

  
(g) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡 = -256 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚  =  -127 mm (h) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡 = -126 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚  =  -39 mm 

𝑑𝑑 𝑥𝑥
 =

 5
00

 m
m

 

  
(i) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡 = -525 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚  =  -248  mm (j) 𝑑𝑑𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡 = -237 mm; 𝑑𝑑𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚  =  -83 mm 

Figure 7. Deformed configurations of SRC-FEMs relative to mono- and bi-layer 76SFCC systems, for 
different values of the top-plate lateral displacement 𝒅𝒅𝒙𝒙 (𝒅𝒅𝒛𝒛,𝒕𝒕𝒕𝒕𝒕𝒕: vertical displacement of the top plate; 

𝒅𝒅𝒛𝒛,𝒎𝒎𝒎𝒎𝒎𝒎: vertical displacement of the mid-horizontal layer). 
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The configuration under  𝑑𝑑𝑥𝑥 = 500 mm of the single-layer system shows all the rods under tensile 
forces and the top plate almost collapsed onto the bottom plate. As we already noted, such a 
configuration is only theoretical, since it contemplates very large tensile forces in the rods inclined 
towards the positive 𝑥𝑥- axis, which are markedly greater than the yielding force 𝑃𝑃𝑦𝑦  (cf. panel (i) of 
Figure 7). Instead, the two-layer system carries much lower axial forces than the single-layer system. 
In such a system, tensile forces act in the rods inclined towards the +𝑥𝑥- axis, and compressive forces 
act in the rods inclined towards the -𝑥𝑥- axis. Both forces always result in 𝑃𝑃 < 𝑃𝑃𝑦𝑦, up to  𝑑𝑑𝑥𝑥 = 500 
mm. With reference to such a system, we find that the shear forces carried by the rods grow with the 
lateral displacement 𝑑𝑑𝑥𝑥, featuring maximum values approximatively equal to 0.07, 0.19, 0.39, 0.54, 
0.66 and 0.74 of the maximum axial forces, for 𝑑𝑑𝑥𝑥 respectively equal to 50 mm, 100 mm, 200 mm, 
300 mm, 400 mm and 500 mm. The bending moments approximately exhibit values equal in 
magnitude but opposite in sign at the ends of each rod, with extreme values circa equal to one half of 
the competent shear force multiplied by the rod length. Finally, the twisting moments carried by the 
rods are approximately one order of magnitude smaller than the bending moments. The above results 
provide evidence of a transition from a stretching-dominated response to a coupled stretching-
bending regime of the systems equipped with semi-rigid connections, for growing values of the lateral 
displacements. 

4. Concluding remarks 
We have studied the nonlinear elastic response of novel metamaterials obtained by stiffening sfcc 
pentamode layers with confinement plates. We observed that the infinitesimal mechanisms exhibited 
by the examined systems in the small displacement regime switch to a stiffening lateral force vs. 
lateral displacement response under large displacements (Sect. 3). Such geometrically nonlinear 
behavior, which is also found in different lattice structures [32]-[34] and triple friction pendulum 
bearings [20][21], can be finely adjusted by playing with the bending rigidity of the nodes and the 
number of layers (cf. Sect. 3.2).  
The results of the present study allowed us to extend recent findings on the bending-dominated 
response of confined pentamode lattices [5], [17]-[19] to the case of the stretching-dominated or 
coupled stretching-bending response of sfcc pentamode metamaterials equipped with hinged or semi-
rigid connections. We were able to design sfcc multi-layer systems entirely made of steel (using steel 
both for the stiffening plates and the pentamode lattices), which exhibit effective lateral stiffness 
approximatively equal to that of a commercial seismic isolator made of soft rubber-pads and thin steel 
shims (Sect. 3.2). Their use as stop-band materials for shear waves [7]-[9] within novel impact 
protection gears awaits attention.  
We may conclude that pentamode bearings offer several advantages over other available structural 
bearings [11]-[14], which mainly follow from the fact that such systems can be easily designed to 
behave as tension-capable and performance-based systems, and because their mechanical properties 
are driven largely by the geometry of the lattice microstructure, rather than the chemical composition 
of the material (i.e, such systems behave as mechanical metamaterials). It is worth noting that it is 
possible to play with the lattice microstructure in order to achieve the desired combination of shear 
and compression response (cf. Sect. 3 and Refs.  [5], [17]-[19]). Moreover, the choice of the material 
offers additional design opportunities, both in terms of the elastic response, and for what concerns 
the energy dissipation properties of the system. We have also observed that it is possible to design 
laminated structures that feature multiple pentamode layers equipped with different materials and 
properties, while in laminated rubber bearings the only lamination variable relative to the soft layers 
consists of the use of natural or synthetic rubber [5]. Finally, pentamode bearings can be manufactured 
on employing rapid prototyping techniques that make use of single or multiple materials (metals, 
polymers, etc.) [4]-[6], and space grid technologies employing ball-joint systems [25]. 
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Future extension of the present research will regard experimental testing of real-scale physical models 
of pentamode bearings [35], the modeling of plastic and fracture damage in the rods of pentamode 
bearings under significant strains [36]-[38], and discrete-to-continuum approaches to the mechanics 
of confined multilayered structures [39]-[41]. Peculiar features of the examined systems, which 
suggest additional directions for future work, include their increasing lateral rigidity and vertical 
deformability in the large lateral displacement regime (cf. Sect. 3.2). We recommend that future 
studies undertake detailed investigations of such geometrically nonlinear effects, with areas of focus 
including the examination of systems with variable numbers of layers, the inclusion of dissipative 
and stiffening members within the pentamode layers, and the use of lateral confinement/pre-stress 
techniques. 
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